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Abstract

The solution of large, sparse linear systems is often a dominant phase of computation for simulations
based on partial differential equations, which are ubiquitous in scientific and engineering applications.
While preconditioned Krylov methods are widely used and offer many advantages for solving sparse
linear systems that do not have highly convergent, geometric multigrid solvers or specialized fast solvers,
Krylov methods encounter well-known scaling difficulties for over 10,000 processor cores because each
iteration requires at least one vector inner product, which in turn requires a global synchronization
that scales poorly because of internode latency. To help overcome these difficulties, we have developed
hierarchical and nested Krylov methods in the PETSc library that reduce the number of global inner
products required across the entire system (where they are expensive), though freely allow vector inner
products across small subsets of the entire system (where they are inexpensive) or use inner iterations
that do not invoke vector inner products at all. We introduce the hierarchical FGMRES method, or
h-FGMRES, and we demonstrate the impact of two-level h-FGMRES with a nonlinear preconditioner on
the PFLOTRAN subsurface flow application. We also demonstrate the impact of nested BiCGStab with
a linear Chebyshev preconditioner. These hierarchical and nested Krylov methods significantly reduced
overall PFLOTRAN simulation time on the Cray XK6 when using 10,000 through 224,000 cores through
the combined effects of reduced global synchronization due to fewer global inner products and stronger
inner hierarchical or nested preconditioners.

Keywords: hierarchical, nested, Krylov methods, iterative preconditioner

1. Introduction

Even on today’s high-performance computer architectures, the solution of sparse linear systems is a
substantial fraction of overall simulation time and presents challenges in scalability for applications based
on partial differential equations (PDEs), which are ubiquitous in scientific and engineering modeling. It-
erative solution with preconditioned Krylov methods [1] is the approach of choice for many large-scale
applications. Krylov methods often highly accelerate the convergence of simple iterative schemes for
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sparse linear systems that do not have highly convergent geometric multigrid solvers or specialized fast
solvers. Thus, in general, Krylov methods are often desirable, but they do have a significant drawback
on large core counts in that they require at least one global synchronization per iteration [2] for com-
puting a vector inner product of the form wTv =

∑n
i=1 wivi, where v = [v1, v2, ...vn],T implemented as

local summations followed by an “all-reduce” global collective operation. The other dominant phase of
Krylov methods, matrix-vector products, do not require any global synchronization and generally require
communication only between neighboring processors (and perhaps hierarchies of neighbors). The global
synchronization, done with MPI_Allreduce() when using the Message Passing Interface (MPI) [3], is
known to be a major bottleneck on the Cray XT5 and Cray XK6 because its cost grows relatively quickly
with the number of cores involved in the reduction as a result of internode latency. Although much less
of an issue on the IBM Blue Gene/P and Blue Gene/Q, MPI_Allreduce() is still strongly affected by
load-balancing problems. Moreover, for applications to run efficiently as core counts continue to grow
on emerging extreme-scale architectures, algorithmic approaches that reduce global synchronization are
increasingly important.

To overcome the bottlenecks of Krylov solvers as applications scale to million-core simulations and be-
yond, researchers have developed new variants of Krylov methods that reduce and hide both synchroniza-
tion and communication (see, e.g., [4]). For example, communication-avoiding GMRES (CA-GMRES) [5]
reorganizes the sparse-matrix kernel of GMRES [6] to compute k matrix-vector products at once with
reduced communication cost; s-step Krylov methods create s new Krylov vectors at once and orthogo-
nalize them together [7–10]; a pipelined variation of GMRES, called p(l)-GMRES [11], hides the global
reduction latency with l iterations; and an improved variant of BiCGStab [12], named IBiCGStab[13],
reduces four global inner products per iteration to one through algorithmic reorganization and overlap-
ping communication with computation. All these approaches have demonstrated important advances for
single-level Krylov iterations. In fact, even further reduction of global synchronization can be achieved
by incorporating multiple levels of hierarchical or nested inexact iterations as preconditioners. In this
paper, we take this approach and name our methods hierarchical and nested Krylov methods.

Our work is motivated primarily by two large-scale applications, neutron transport with UNIC [14, 15]
and subsurface flow with PFLOTRAN [16–21], both of whose dominant computational kernel is the
solution of extremely large, sparse linear systems with over 2 billion degrees of freedom. Inspired by
the UNIC strategy of exploiting modeling hierarchy, we have developed a general-purpose approach to
hierarchical and nested Krylov solvers and demonstrated its effectiveness for PFLOTRAN. Moreover,
because this hierarchical and nested algorithmic framework is encapsulated in the PETSc library [22–24],
applications that interface to PETSc linear solvers can easily experiment with these techniques without
any source code changes simply by activating the new solvers as runtime options.

The UNIC neutron transport application, which leverages natural hierarchies in modeling, was a
2009 Gordon Bell finalist [14] and demonstrated good weak scaling up to the largest available IBM Blue
Gene/P and Cray XT5 at the time. UNIC solves the neutron transport problem in full reactor cores by
using the Sn method. Neutron transport is solved in a six-dimensional space, the usual R3 crossed with
two angle variables and energy. Physically the code simulates the density of the stream neutrons at each
point within the reactor moving in each direction with a given energy. Of interest to nuclear engineers
is the smallest eigenvalue of the scatter operator. The Sn method discretizes the scattering operator in
space by using the usual finite-element method, while in angle the Sn method uses the discrete ordinate
method (essentially the neutron density is simulated for a finite number of predetermined angles). The
discretization in energy is done by using a finite number of energy groups, binning the neutrons into
collections with similar energy. The resulting sparse matrix has a natural hierarchical block structure
with a large block for each energy, each containing a block for each angle. The block for each angle has
a structure similar to that of the discretization of a scalar PDE over a 3D mesh. The energy groups
are solved sequentially, but the other five dimensions are all solved in parallel with essentially two levels
of flexible GMRES preconditioned with the conjugate gradient method. For example, suppose that we
have divided the geometry into 210 = 1, 024 pieces and have a total of 28 = 256 angles (each of which
requires 1,024 cores for its geometry). The “inner solve” consists of 256 independent CG solves each
running on 1,024 cores using any appropriate preconditioner.

The second application, PFLOTRAN [17, 25], performs continuum-scale simulations of multiscale,
multiphase, multicomponent flow and reactive transport in geologic media. The application has been
designed for parallel scalability, using PETSc parallel constructs for representing PDEs on structured
and unstructured grids. PFLOTRAN also uses PETSc Newton-Krylov solvers, with the inner, linear
system solves usually preconditioned with a single-level domain decomposition approach when solving
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time-dependent problems. PFLOTRAN has been used to run problems with billions of degrees of freedom
on leadership-class supercomputer platforms such as the Cray XT series and the IBM Blue Gene/P. In
such large-scale simulations on the Cray XT machines, we have found that one of the biggest barriers
to parallel scalability is the high cost of global reduction operations at large core counts (beginning
at approximately 10,000 cores). In previous work, we implemented in PETSc an improved variant of
BiCGStab (IBiCGStab) [13] that requires only one synchronization point per iteration, which reduced
overall runtime by around 20 percent but still left global reductions dominating above 30,000 cores [26].

The UNIC code organizes Krylov solves hierarchically, thereby minimizing the effect of the global
synchronization with MPI_Allreduce() because it requires few calls over the entire system; instead,
most occur in inner solves that each run on smaller numbers of processes and are extremely fast. In
contrast, in conventional Krylov approaches, as used in PFLOTRAN and most other applications, all
the MPI_Allreduce() calls occur across the entire system. The key factor is that although all these
applications benefit in numerical efficiency from the orthogonalization resulting from the numerous inner
products in the Krylov methods, UNIC is structured in such a way that most of the inner products need
not be performed across the entire system.

This observation motivates our development of hierarchical and nested Krylov methods, which reduce
the number of global inner products required across the entire system (where they are expensive) in the
outer iterations through hierarchical or nested inexact inner iterations that either freely allow vector inner
products across small subsets of the entire system (where they are inexpensive) or use inner iterations
that do not invoke vector inner products at all.

The concept of leveraging the natural hierarchies that arise in both numerical models and high-
performance architectures is intuitive; and indeed the terms hierarchical iterative methods, inner-outer
iterations, nested solvers, and multilevel solvers have been used in various contexts for approaches that
exploit these concepts [27–30]. Related numerical software includes pARMS [31] and the Teko package of
Trilinos [32]. Note that the term nested solver is also sometimes used to refer to mesh or grid sequencing;
we do not use that terminology in this paper. We emphasize that the presented hierarchical Krylov
methods are not multigrid methods. Rather, they are hierarchical in the sense of a hierarchy of nested
embedded domains, not a hierarchy of meshes.

The remainder of the paper explains the details of our approach, with definitions in Section 2 of
multilevel hierarchical and nested Krylov methods, followed by the definitions of specific algorithms to be
studied, namely, hierarchical FGMRES (h-FGMRES) and nested BiCGStab. For the former, we employ
inner-level inexact GMRES iterations hierarchically for subsystems within subgroups of cores, which
have less synchronization overhead; for the latter, we employ a nested inner-level Chebyshev method
[33, 34], which does not require any global operations. Section 3 explains our software strategy that
enables these new composable algorithms. Section 4 describes the mathematical model and test cases
of the motivating application, PFLOTRAN. Section 5 presents experimental results on the Cray XK6
for PFLOTRAN; we compare the performance of hierarchical FGMRES and nested BiCGStab methods
with conventional GMRES and BiCGStab methods. Our experiments demonstrate that the hierarchical
FGMRES and nested BiCGStab methods significantly reduce overall simulation time on the Cray XK6
when using 10,000 through 224,000 cores through the combined effects of stronger inner hierarchical
or nested preconditioners as well as reduced global synchronization due to fewer global inner products.
We also implemented a nested variant of IBiCGStab, thereby demonstrating that these hierarchical and
nested Krylov methods can be used in conjunction with most of the synchronization/communication
hiding and reducing variants of single-level Krylov methods mentioned above, thereby further reducing
runtimes and improving scalability.

2. Hierarchical and Nested Krylov Algorithms

The objective of this work is to reduce global vector inner products in Krylov methods through
hierarchical or nested multilevel iterations and thereby to reduce overall simulation time and improve
scalability for large-scale PDE-based applications. In this context, we begin by depicting in Figure 1
the hierarchical partitioning of a global vector x. A segment at an upper level is called the parent of
the segments at lower levels that are inherited from it. At level m, a partitioned segment is denoted
by x(i1,··· ,im−1,im), in which the first m-1 indices (i1, · · · , im−1) are inherited from its parents, x, x(i1),
· · · , x(i1,··· ,im−1), and im is its own index. Figure 2 provides a simple example of a two-level hierarchical
vector partition. While the small dimension of the vector in this diagram enables us to provide a concrete
illustration of the notation introduced in Figure 1, in practice, hierarchical and nested Krylov methods are
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Level 0:
︷ ︸︸ ︷

x

Level 1:
︷ ︸︸ ︷
x(1), x(2), · · · , x(i1), · · · , x(n1)

Level 2: · · · ,
︷ ︸︸ ︷
x(i1,1), x(i1,2), · · · , x(i1,i2), · · · , x(i1,n2), · · · ,

· · ·

Level m-1: · · · ,
︷ ︸︸ ︷
x(i1,i2··· ,im−2,1), · · · , x(i1,i2,··· ,im−2,im−1), · · · , x(i1,i2,··· ,im−2,nm−1) , · · ·

Level m: · · · ,
︷ ︸︸ ︷
x(i1,i2,··· ,im−1,1), · · · , x(i1,i2,··· ,im−1,im), · · · , x(i1,i2,··· ,im−1,nm) , · · ·

Figure 1: Hierarchical vector partition. The parent global vector x on level 0 has n1 subvector children on level 1, denoted
by x(1), x(2), · · · , x(i1), · · · , x(n1). We emphasize that parenthesized subscripts indicate subvectors, not individual vector
elements. For notational simplicity, on level 2 we illustrate the subvector children, x(i1,1), x(i1,2), · · · , x(i1,i2), · · · , x(i1,n2),
of a single level-1 parent, x(i1). All other level-1 entries also have their own subvector children on level 2. Likewise, levels
m-1 and m illustrate the subvector children of a single parent subvector on the immediately preceding level.

Level 0: x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Level 1:
︷ ︸︸ ︷
x(1) = [1, 2, 3], x(2) = [4, 5, 6, 7], x(3) = [8, 9, 10]

Level 2:
︷ ︸︸ ︷
x(1,1) = [1, 2, 3],

︷ ︸︸ ︷
x(2,1) = [4], x(2,2) = [5, 6], x(2,3) = [7],

︷ ︸︸ ︷
x(3,1) = [8], x(3,2) = [9, 10]

Figure 2: Simple example of hierarchical vector partition with 2 levels, which illustrates the partitioning notation introduced
in Figure 1.

intended for large-scale problems of minimum dimension O(106) using at least O(104) cores. Although
hierarchical and nested approaches do reduce the number of outer level Krylov iterations for smaller
problem sizes and fewer cores, these approaches do not generally reduce overall simulation time in this
regime because global synchronization effects are not as severe.

Let xj denote the computed approximation of the solution vector x at the jth iteration, and let
KSP (k) represent a Krylov or other iterative method used at level k. We use the term inexact KSP for
solving a linear system within a given convergence tolerance or with a (small) fixed number of iterations.

Algorithms 1 and 2 define multilevel hierarchical and nested Krylov methods for solving the linear
system

Ax = b, where A ∈ Cn×n x, b ∈ Cn. (1)

Algorithm 1 Hierarchical Krylov approach for solving Ax = b

1: Partition the initial global vector x0 into a hierarchy as shown in Figure 1; partition the total cores
with same hierarchy.

2: Map the vector partition into the core partition.
3: for j = 0, 1, . . . until convergence (on all cores) do
4: for level k = 1, . . . , m-1, recursively do
5: level k-1: one KSP (k−1) iteration to either xj (if k=1) or to xj(··· ,ik−1)

(if k>1)

6: with the following preconditioner:
7: level k: for each child of xj (or xj(··· ,ik−1)

), apply inexact KSP (k) iterations on the associated

8: subgroup of cores.
9: end for

10: end for

In this paper, we restrict our focus to two-level methods, which can be called inner-outer Krylov
methods. For the hierarchical Krylov approach, the outer (top-level) solver iterates over all variables of
a global problem, while inner (lower-level) solvers handle smaller subsets of physics on smaller physical
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Algorithm 2 Nested Krylov approach for solving Ax = b

1: for j = 0, 1, . . . until convergence (on all cores) do
2: for level k = 1, . . . , m-1, recursively do
3: level k-1: Apply one KSP (k−1) iteration to xj with the following preconditioner:
4: level k: Apply inexact KSP (k) iterations to xj .
5: end for
6: end for

subdomains. Different types of Krylov methods KSP (k) can be chosen for the outer iteration and
inner iterations on subgroups of cores. This approach greatly expands available preconditioners and
adds tremendous flexibility to single-level Krylov methods. For example, problem partitioning and inner
solver algorithms can be selected based on geometric and physics information for subdomains and subsets
of variables.

For the algorithms described above, the lower-level (inner) iterations serve as preconditioners for the
higher-level (outer) iterations. To facilitate discussion, we introduce the following definition.

Definition. When an iterative method is used as a preconditioner, if it employs only linear operations
(and hence is a linear operator1), it is called a linear iterative preconditioner; otherwise it is a nonlinear
iterative preconditioner. For example, Jacobi, Gauss-Seidel, SOR, SSOR, and Chebyshev methods (see,
e.g., [35]) can be used as linear iterative preconditioners. Krylov methods, such as GMRES and CG, can
be used only as nonlinear iterative preconditioners.

In order to maintain the convergence properties of outer Krylov iterations, the types of outer and
inner iterative methods must be bound together in one of the following categories:

1. Outer: a flexible Krylov method that allows nonlinear iterative preconditioning;

Inner: any iterative method, including Krylov methods such as GMRES or CG; or

2. Outer: any Krylov method;

Inner: a linear iterative preconditioner.

GMRES [6] and its flexible variant FGMRES [29] are the most commonly used Krylov methods with
well-established convergence properties. BiCGStab [12] with a block Jacobi or additive Schwarz (with
small overlap) preconditioner, using one block per core and ILU(0) as the local solver, has often been
the method of choice for PFLOTRAN, the application that has motivated this work. For highly time-
dependent problems, this approach works well because the Jacobian systems are diagonally dominant,
and at high processor core counts it is preferable to the multigrid approaches we have tried because of
its lower communication costs. Since many Krylov iterations are often required for the Jacobian solves,
BiCGStab is preferred over restarted GMRES because it uses short recurrences and avoids repeated
orthogonalizations that have high communication costs at high core counts. The Chebyshev [34] method
requires no inner products and has been used successfully in combination with other Krylov methods [33].
The spectrum of the Jacobian matrices for the PFLOTRAN cases studied in this paper (see Figure 6
in Section 5) suggest that the Chebyshev algorithm would be an optimal algorithm among the available
linear iterative preconditioners.

Thus, in this paper we focus on two specific algorithms: hierarchical FGMRES (h-FGMRES) with a
GMRES nonlinear iterative preconditioner, given by Algorithm 3, and nested BiCGStab with a Chebyshev
linear iterative preconditioner, given by Algorithm 4. Because the inner-level solves serve as precondi-
tioners, these can be inexact; in practice, we have found that just a few iterations, denoted by inner its
in Algorithms 3 and 4, suffice for the cases considered here. Alternatively, a (loose) convergence tolerance
could be specified for the inner-level solves instead of a fixed number of iterations, though it is important
not to waste resources in solving the inner iterations more accurately than needed in the context of the
overall hierarchical or nested solver. Block Jacobi, using one block per core and ILU(0) as the local
solver, is used as the innermost preconditioner for both algorithms.

Figure 3 shows the nonzero entries of the Jacobian matrix for PFLOTRAN case 1 (see Section 5)
on a 4 × 4 × 4 regular mesh partitioned across four cores. This diagram provides a complementary

1A linear operator L satisfies L(ax) = aL(x) and L(x+ y) = L(x) + L(y).
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Algorithm 3 Two-level h-FGMRES with a GMRES nonlinear iterative preconditioner

1: Partition the initial global vector x0 into a hierarchy as shown in Figure 1.
2: Assign each initial level-2 subvector, x0(i1,i2), to a core.

3: for j = 0, 1, . . . until convergence (on all cores) do
4: one FGMRES iteration to xj (over the global system) with the following preconditioner:
5: for k = 0, 1, . . . , inner its (concurrently on subgroups of cores) do
6: for each child of xj , one GMRES iteration (preconditioned with block Jacobi / ILU(0)).
7: end for
8: end for

Algorithm 4 Nested BiCGStab with a Chebyshev linear iterative preconditioner

1: for j = 0, 1, . . . until convergence (on all cores) do
2: one BiCGStab iteration over the global system with the following preconditioner:
3: for k = 0, 1, . . . , inner its (on all cores) do
4: one Chebyshev iteration over the global system (preconditioned with block Jacobi / ILU(0)).
5: end for
6: end for

perspective on the hierarchical FGMRES/GMRES approach given by Algorithm 3 and the nested
BiCGStab/Chebyshev approach given by Algorithm 4. In each case the outer Krylov method addresses
the entire global problem. Figure 4 uses the notation introduced in Figure 1 to illustrate the hierarchical
vector partitioning that corresponds to the h-FGMRES matrix (on the left-hand side of Figure 3).

Although in practice one would apply hierarchical and nested Krylov approaches for much larger
problems than this simple example, this matrix perspective facilitates consideration of the following,
extreme, example of a hierarchical Krylov method based on FGMRES with a block Jacobi preconditioner
on 2n cores (for example, on 217 = 131,072 cores). We could employ flexible FGMRES using a two-
block Jacobi preconditioner, with each block approximately solved on 2n−1 cores, and then recursively
apply this algorithm to each of the two blocks, resulting in a hierarchy with n levels. A variant could
be obtained by using an overlapping additive Schwarz preconditioner instead of block Jacobi. While
one would generally expect to use fewer levels of hierarchy, this exercise introduces the basic concept
extending the hierarchies beyond the two-level case illustrated in Figure 3.

Figure 3: Illustration of hierarchical and nested Krylov approaches from the perspective of a sparse coefficient matrix A
partitioned across four cores by contiguous blocks of rows; blue dots indicate nonzero entries of the matrix. Left: hierarchical
FGMRES/GMRES (given by Algorithm 3). Two submatrices highlighted in yellow indicate level-1 partitioning, while four
submatrices highlighted in red indicate level-2 partitioning; the corresponding vectors x and b are partitioned identically,
as shown in Figure 4. Right: BiCGStab/Chebyshev given by Algorithm 4. In both cases the innermost preconditioner is
block Jacobi with one block per processor and ILU(0) as the local solver.

3. Software for Composable Sparse Linear Solvers

Two design principles of the PETSc library that are essential for managing the software complexity of
the hierarchical and nested approaches introduced in Section 2 are object-oriented design and consistent
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Figure 4: Illustration of hierarchical vector partitioning introduced in Figure 1 corresponding to the matrix illustrated in
the left-hand side of Figure 3; (sub)vector dimensions are indicated at each level.

use of MPI communicators for all data and solver objects [22, 36]. The emerging era of extreme-scale
computing provides new imperatives that reinforce the importance of good software engineering to enable
the development of new composable algorithms from reusable, well-tested pieces. Such capabilities enable
the creation of novel schemes tailored to exploit both hierarchical architectural features and increasingly
complex modeling, including custom approaches for multiphysics problems [37].

A third principle that is important for managing numerical software complexity for emerging extreme-
scale architectures is separation of the control logic of the algorithms from the computational kernels of
the solvers [38]. This is crucial to allow injecting new hardware-specific computational kernels without
having to rewrite the entire solver software library. In particular, though beyond the scope of this
paper, these hierarchical and nested Krylov methods can readily employ new computational kernels for
GPUs [39] and hybrid multicore programming models [40].

As further discussed in Section 4, PFLOTRAN employs the hierarchical and nested Krylov solvers as
part of an implicit time advance, where a nonlinear system is solved at each timestep by a preconditioned
Newton-Krylov method using PETSc’s nonlinear solvers. The nonlinear solvers in turn can employ a
broad range of Krylov solvers and preconditioners, all accessible through a common interface, so that
particular algorithms and parameters can be selected at runtime. Section 5 indicates the runtime options
used to activate the hierarchical and nested Krylov solvers in Algorithms 3 and 4.

4. Motivating Application: PFLOTRAN

We have tested these hierarchical and nested Krylov methods in PFLOTRAN, a state-of-the-art code
for simulating multiscale, multiphase, multicomponent flow and reactive transport in geologic media
on machines ranging from laptops to leadership-class supercomputers. PFLOTRAN solves a coupled
system of mass and energy conservation equations for a number of phases, including air, water, and
supercritical CO2, and a number of chemical components. The code utilizes finite volume or mimetic finite
difference spatial discretizations combined with backward-Euler (fully implicit) timestepping for the flow
and reactive transport solves or, optionally, operator splitting for the reactive transport. PFLOTRAN,
which is built on PETSc, makes extensive use of iterative nonlinear and linear solvers, distributed linear
algebra data structures, parallel constructs for representing PDEs on structured and unstructured grids,
performance logging, runtime control of solvers and other options, and parallel binary I/O.

Although PFLOTRAN can simulate complicated systems, in this study we restrict the benchmark
problems to isothermal simulations of variably saturated porous media flow (no transport) as described
by Richards’ equation. In the mixed form (containing both pressure and saturation), the governing
equation is

∂

∂t

(
ϕsρ

)
+ ∇ · ρu = S,

where ϕ denotes the porosity of the geologic medium, s the saturation (fraction of pore volume filled
with liquid water), ρ the fluid density, S a source/sink term representing water injection/extraction, and
u the Darcy velocity defined as

u = −κκr
µ

∇
(
P − ρgz

)
,

where P denotes fluid pressure, µ viscosity, κ the absolute permeability of the medium, κr the relative
permeability of water to air, g the acceleration of gravity, and z the vertical distance from a datum. The
relative permeability is a nonlinear function of saturation, and this nonlinearity is responsible for most
of the numerical difficulties encountered in variably saturated flow problems. Several models for this
relationship exist; we use van Genuchten [41] relative permeability functions in this study.
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To numerically solve the governing equations, in this study we use a backward-Euler time discretiza-
tion and a first-order finite volume spatial discretization on a uniformly spaced rectilinear grid. At cell
interfaces, absolute permeabilities are calculated by harmonic averaging and one-point upstream weight-
ing is used for relative permeability calculations. The resulting system of nonlinear algebraic equations
is solved via Newton-Krylov methods using PETSc’s Scalable Nonlinear Equations Solvers (SNES).

We evaluate the proposed hierarchical and nested Krylov algorithms using two PFLOTRAN test
cases. We consider only flow problems here. In coupled flow and reactive transport simulations, PFLO-
TRAN sequentially couples flow and reactive transport and performs separate flow and reactive transport
solves. Both solves can be computationally expensive; but flow solves tend to require many iterations,
and involve proportionally less local work than does the reactive transport solve, and therefore suffer
more from communication bottlenecks—hence our focus on flow problems. We describe the two test
cases below. In our numerical experiments, we run each test case for the minimum number of time steps
required to obtain a reasonable picture of the basic physics seen in that case.

Case 1: Cubic domain with a central injection well; number of time steps: 6.
This case models a 100 m × 100 m × 100 m domain with a uniform effective permeability of 1

darcy and an injection well at the exact center. The domain is fully saturated, and the initial pressure
distribution follows a hydrostatic gradient; hydrostatic equilibrium is enforced at the domain boundaries.
At time zero, injection begins at a rate of 10 m3 per hour; the sharp change in pressure (see Figure 5)
results in difficult-to-solve algebraic systems during the first several time steps. We note that although
we scale up the grid resolution as we increase processor core counts in our experiments, the presence of
the well renders this case not useful for assessing weak scalability: injection at the well (represented as a
point in the conceptual model) will be spread across a smaller volume as the grid resolution is increased,
resulting in somewhat different physical behavior at different grid spacings.

Figure 5: A portion of a 2D slice through the middle the y-axis (z is vertical) for a version of the case 1 problem run using
a 128 × 128 × 128 grid. The plotted vector field shows that the velocities (in units of m/yr) are large near the center
(and essentially zero far away), and a pseudocolor plot of the pressure field (in Pascals) shows that pressure mostly varies
in accordance with the hydrostatic gradient but is high in the center cell where the injection well is located). As the grid
resolution is refined, the center of the domain will display the same basic pattern but the high velocity/high pressure region
around the well will occupy a smaller portion of the domain.

Case 2: Regional flow without well near river; number of time steps: 2.
This case models a 5000 m × 2500 m × 100 m region with a river at the eastern boundary. The

subsurface is divided into four horizontal stratigraphic units, with homogeneous material properties
throughout each unit. The domain is variably saturated with the water table initially located 10 m
below the surface at the western boundary and sloping gradually toward the river. No flow conditions are
imposed at the north, south, and bottom boundaries; hydrostatic equilibrium is imposed at the western
boundary. At the eastern boundary, the river is represented by imposing a seepage face condition: a
hydrostatic pressure gradient is imposed below the river stage, and atmospheric pressure is imposed
above it. A recharge condition of 25 cm/yr is imposed across the top boundary. Because no wells are
included in the domain, one can draw some conclusions about weak scalability using this benchmark.
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5. Numerical Experiments

In this section we present numerical results of Algorithms 3 and 4 described in Section 2 on PFLO-
TRAN cases 1 and 2. Experiments were conducted on a Cray XK6 system located at the Oak Ridge
Leadership Computing Facility [42], with 18,688 compute nodes, each consisting of one AMD 16-core
Opteron 6274 processor running at 2.2 GHz, 32 gigabytes of DDR3 memory, giving a total of 299,008
cores. The new high-performance Gemini network provides high bandwidth, lower latency, faster collec-
tives, and greater reliability than did previous generations of Cray machines.

For a given number of cores, np, the vectors x, b, and matrix A in Equation (1) are partitioned
contiguously into np row blocks, each of which is assigned to a core. In what follows, we refer to this
mapping between the Equation (1) and the np total cores as a nonhierarchical system distribution. The
diagonal blocks of the distributed matrix A, shown by the red submatrices in Figure 3, form the innermost
preconditioning submatrices. In all experiments the innermost preconditioner is block Jacobi, using one
block per core and ILU(0) as the solver on each block.

Comparison of GMRES and hierarchical FGMRES (h-FGMRES). Table 1 compares GM-
RES (indicated by ngp = 1 in column 2) and h-FGMRES (indicated by ngp > 1 in column 2) for
PFLOTRAN case 1. For both cases we employed 30 as the GMRES restart parameter. To implement
the 2-level h-FGMRES hierarchy, we group the nonhierarchical system distribution on np cores described
above into ngp subgroups, each containing np/ngp cores and holding a corresponding subsystem of Equa-
tion (1). For each outer FGMRES iteration, 6 GMRES inner iterations with preconditioner block Jacobi
/ ILU(0) were concurrently applied to each subsystem using the level-1 subgroups of cores. At a given
timestep, if the outer linear iterations fail to reach the given convergence criterion after a maximum of
10,000 iterations, the timestep is cut, and the computation restarts. Column 3 indicates the number of
timestep cuts. For GMRES, the number of blocks used in the block Jacobi preconditioner equals the
number of cores, np. As the number of cores increases, the preconditioner becomes weaker, causing more
failures and thus more timestep cuts. Two-level h-FGMRES is equivalent to using ngp diagonal blocks
of matrix A as a preconditioning matrix. Because ngp � np, the blocks are much larger and retain
more Jacobian data, resulting in more robust preconditioning than with the nonhierarchical approach
and thereby avoiding timestep cuts in all test cases. Column 4 displays the percentage of total execution
time consumed by vector inner products in both outer and inner iterations.

Table 1: Comparison of GMRES and 2-level h-FGMRES for PFLOTRAN Case 1.

Number of Cores (np) Groups of Timestep % Time for Outer Execution
(mesh size) Cores (ngp) Cuts Inner Products Iterations Time (sec)

512 1 0 28 3,853 43.9
(256x256x256) 16 0 17 903 45.8

4,096 1 0 39 11,810 146.5
(512x512x512) 64 0 23 2,405 126.7

32,768 1 1 48 35,177 640.5
(1024x1024x1024) 128 0 28 5,244 297.4

98,304 1 7 77 59,250 1346.0
(1024x1024x1024) 128 0 47 6,965 166.2

160,000 1 9 72 59,988 1384.1
(1600x1600x640) 128 0 51 8,810 232.2

As shown by column 5, h-FGMRES significantly reduced the number of outer Krylov iterations (and
thus global MPI_Allreduce() calls), thereby reducing the fraction of overall runtime for inner products
on 98,304 cores from 77% for conventional GMRES to 47% for h-FGMRES, and on 160,000 cores from
72% for conventional GMRES to 51% for h-FGMRES. Moreover, the inner h-FGMRES iterations served
as a stronger preconditioner than block Jacobi / ILU(0) alone, leading to a more robust solver that
overcame the timestep cuts needed by conventional GMRES. The impact of h-FGMRES on overall
PFLOTRAN simulation time is profound at high core counts: on 98,304 and 160,000 cores, h-FGMRES
reduced overall runtime by factors of 8 and 6, respectively, compared with conventional GMRES.

In our tests, the total number of cores is divided equally into ngp subgroups, chosen as a multiple
of 16, the number of cores in a processor node of the Cray XK6. As expected, during experiments
we observed that the algorithmic performance is sensitive to problem partitioning and that respecting
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the physics of a problem (for example, not partitioning in the midst of the well region for case 1), is
important. Because the h-FGMRES approach provides enormous flexibility in possible choices of inner-
level solvers for subproblems, it is feasible to apply custom partitionings and inner-level solvers with
varying degrees of cost and robustness based on underlying physics and geometry as well as machine
topology; such considerations are aspects of future research.

We emphasize that all algorithmic experiments required no source code changes to PFLOTRAN;
rather, the application simply activated the new hierarchical and nested Krylov solvers by using PETSc
runtime options. For example, the runtime options for conventional GMRES are given below, where the
prefix -flow denotes PFLOTRAN’s flow solver (the focus of this work).

./pfltran -pflotranin <pflotran_input>

-flow_ksp_type gmres -flow_ksp_pc_side right -flow_pc_type bjacobi -flow_pc_bjacobi_blocks np

-flow_sub_pc_type ilu

Likewise, the following are runtime options for two-level h-FGMRES, given by Algorithm 3, where the
prefix -sub (or -flow sub for PFLOTRAN’s flow solver) indicates algorithmic choices for the inner level
of the hierarchy. Here we use 6 iterations of GMRES, preconditioned by block Jacobi / ILU(0), although
more generally, any appropriate linear solver could be employed.

./pfltran -pflotranin <pflotran_input>

-flow_ksp_type fgmres -flow_ksp_pc_side right -flow_pc_type bjacobi -flow_pc_bjacobi_blocks ngp

-flow_sub_ksp_type gmres -flow_sub_ksp_max_it 6 -flow_sub_pc_type bjacobi

-flow_sub_sub_pc_type ilu

Comparison of BiCGStab and nested BiCGStab/Chebyshev. The linear solvers of choice for
PFLOTRAN have been BiCGStab and IBiCGStab, both with a block Jacobi / ILU(0) preconditioner.
One of our goals in this work is to further improve their performance by adding a nested linear iterative
preconditioner, as introduced generally in Algorithm 2. Among all available linear iterative precondition-
ers, the Chebyshev method is likely optimal if (1) the spectrum of the Jacobian matrix is located inside
an enveloping ellipse that does not include the origin and (2) the approximate extreme eigenvalues can
be computed efficiently during implementation of the Chebyshev algorithm. We investigated the spectra
of PFLOTRAN Jacobian matrices for test cases 1 and 2 and confirmed that property (1) is satisfied. The
Chebyshev implementation provided by the PETSc library is a variant of the hybrid Chebyshev Krylov
subspace algorithm without purification [33]. For a newly updated matrix, this algorithm applies a small
number of GMRES iterations to approximate extreme eigenvalues, which are then fed to the Chebyshev
iterations. The cost of eigenvalue estimate is negligible in our tests.

Table 2 compares conventional BiCGStab (denoted by 0 inner iterations in column 2) with nested
BiCGStab (denoted by 4 inner iterations in column 2) for PFLOTRAN’s test case 1. The BiCGStab al-
gorithm employs the preconditioner twice during each iteration; for the nested BiCGStab approach, each
application of the preconditioner employs two Chebyshev iterations, which themselves are preconditioned
by block Jacobi / ILU(0). Column 4 displays the percentage of overall execution time for global vector
inner products. On large numbers of cores (e.g., np = 98,304 and 160,000) the ratios of time savings in
these global synchronizations (column 4) are almost the same as the savings in overall execution time
(column 5).

Table 2: Comparison of BiCGStab and nested BiCGStab for PFLOTRAN case 1.

Number of Cores (np) Inner Outer % Time for Execution
(mesh size) Iterations Iterations Inner Products Time (sec)

512 0 1237 10 18.8
(256x256x256) 4 565 6 24.3

4,096 0 2649 28 46.5
(512x512x512) 4 1049 12 45.8

32,768 0 4875 36 95.7
(1024x1024x1024) 4 1998 19 94.8

98,304 0 5074 64 66.7
(1024x1024x1024) 4 1965 40 43.0

160,000 0 6240 64 90.6
(1600x1600x640) 4 2641 50 69.2
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Figure 6: Smallest few eigenvalues of Jacobian matrix, scaled by largest eigenvalue (i.e., 1/λmax) with and without
preconditioner.

Again, no changes to PFLOTRAN were needed for experimenting with these algorithms. The PETSc
runtime options to activate conventional BiCGStab for PFLOTRAN’s flow solver are as follows:

./pfltran -pflotranin <pflotran_input>

-flow_ksp_type bcgs -flow_ksp_pc_side right -flow_pc_type bjacobi -flow_pc_bjacobi_blocks np

-flow_sub_pc_type ilu

Likewise, the runtime options for nested BiCGStab with the Chebyshev preconditioner, given by Algo-
rithm 4, are as follows:

./pfltran -pflotranin <pflotran_input>

-flow_ksp_type bcgs -flow_ksp_pc_side right -flow_pc_type ksp

-flow_ksp_ksp_type chebyshev -flow_ksp_ksp_chebychev_estimate_eigenvalues 0.1,1.1

-flow_ksp_ksp_max_it 2 -flow_ksp_ksp_norm_type none -flow_ksp_pc_type bjacobi

-flow_ksp_sub_pc_type ilu

For further insight, we plot in Figure 6 the estimated smallest few eigenvalues scaled by 1/λmax for a
Jacobian matrix using a mesh of dimension 32 × 32 × 32, distributed among 64 cores. We consider three
cases: (1) no preconditioner, (2) a preconditioner of block Jacobi / ILU(0), and (3) a preconditioner of two
Chebyshev iterations, which themselves are preconditioned by block Jacobi / ILU(0). The eigenvalues are
computed through GMRES or FGMRES outer iterations with restart 300. As indicated by the estimated
values λmin/λmax, two Chebyshev iterations with block Jacobi / ILU(0) is a stronger preconditioner than
just block Jacobi / ILU(0), thus reducing the outer iterations of the flow solver, as reported in Table 2.

Comparison of BiCGStab, IBiCGStab, and nested IBiCGStab/Chebyshev. The hierar-
chical and nested Krylov approaches presented in this paper can be used in conjunction with most of
the recently developed Krylov methods mentioned in Section 1 that reduce or hide communication and

Table 3: Comparison of BiCGStab, IBiCGStab, and nested IBiCGStab for PFLOTRAN case 1.

Number of Cores BiCGS IBiCGS Nested IBiCGS
grids Outer Iters Time (sec) Outer Iters Time (sec) Outer Iters Time (sec)

512
256x256x256 1237 18.8 1364 21.3 546 24.2

4,096
512x512x512 2649 46.5 2668 41.5 1033 44.1

32,768
1024x1024x1024 4875 95.7 5219 85.0 2073 89.0

98,304
1024x1024x1024 5074 66.7 5219 37.8 2039 33.4

160,000
1600x1600x640 6240 90.6 6904 66.6 2407 52.0
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Table 4: BiCGStab, IBiCGStab and nested IBiCGStab for PFLOTRAN case 2.

Number of Cores BiCGS IBiCGS Nested IBiCGS
grids Outer Iters Time (sec) Outer Iters Time (sec) Outer Iters Time (sec)

1,600
800x408x160 1003 16.6 1046 16.4 411 18.0

16,000
1600x816x320 2378 38.7 2265 32.7 829 29.6

80,000
1600x1632x640 4304 81.4 4397 60.2 1578 53.1

160,000
1600x1632x640 4456 71.3 4891 38.7 1753 31.9

192,000
1600x1632x640 3207 41.5 4427 29.8 1508 22.2

224,000
1600x1632x640 4606 55.2 4668 29.3 1501 20.9

synchronization, for example, IBiCGStab [13]. To demonstrate this capability, we implemented nested
IBiCGStab by replacing the outer BiCGStab iteration with the IBiCGStab iteration in Algorithm 4;
that is, we used identical runtime options of the nested BiCGStab but replaced “-flow ksp type bcgs”
with “-flow ksp type ibcgs.”

Tables 3 and 4 compare the numbers of outer iterations and execution time of the BiCGStab,
IBiCGStab, and nested IBiCGStab methods for PFLOTRAN cases 1 and 2, respectively. Figure 7
shows the percentage of overall execution time of IBiCGStab and nested IBiCGStab compared with
BiCGStab for test case 2. The impact of the nested IBiCGStab approach is profound at very high core
counts. For example, for test case 2 on 80,000 cores, the nested IBiCGStab approach reduced overall
runtime to 65% of BiCGStab and 88% of IBiCGStab, while on 224,000 cores, the nested IBiCGStab
approach reduced overall runtime to only 37% of BiCGStab and 71% of IBiCGStab.
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Figure 7: Comparison of BiCGStab, IBiCGStab, and nested IBiCGStab for PFLOTRAN case 2.

6. Conclusions

This paper introduced hierarchical and nested Krylov variants to overcome well-known scaling difficul-
ties caused by global reductions in standard Krylov approaches for extreme numbers of processor cores.
We introduced the hierarchical FGMRES method, or h-FGMRES, and we demonstrated the impact at
high core counts of two-level h-FGMRES, using GMRES as an inner-level preconditioner, on the PFLO-
TRAN subsurface flow application. We also demonstrated the impact of a nested BiCGStab/Chebyshev
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algorithm. Because these algorithms can be activated at runtime, with no changes to application source
code, other application codes that employ the PETSc library can easily experiment with such techniques.
These principles of hierarchal and nested Krylov methods can be applied to complementary advances
in synchronization/communication-avoiding Krylov methods, thereby offering potentially multiplicative
benefits of combined approaches.

Future work includes exploring additional inner/outer algorithmic pairs and extending the hierar-
chies and nesting to additional levels, especially as we consider emerging extreme-scale architectures.
Also important is incorporating physics insight and machine topology into hierarchical partitioning and
algorithmic selection, potentially through automated strategies over the longer term.
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